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A combination of structure refinements, analysis of the

superspace MEM density and interpretation of difference-

Fourier maps has been used to characterize the incommensu-

rate modulation of rubidium tetrachlorozincate, Rb2ZnCl4, at

a temperature of T = 196 K, close to the lock-in transition at

Tlock-in = 192 K. The modulation is found to consist of a

combination of displacement modulation functions, modu-

lated atomic displacement parameters (ADPs) and modulated

third-order anharmonic ADPs. Up to fifth-order Fourier

coefficients could be refined against diffraction data

containing up to fifth-order satellite reflections. The center-

of-charge of the atomic basins of the MEM density and the

displacive modulation functions of the structure model

provide equivalent descriptions of the displacive modulation.

Modulations of the ADPs and anharmonic ADPs are visible in

the MEM density, but extracting quantitative information

about these modulations appears to be difficult. In the

structure refinements the modulation parameters of the ADPs

form a dependent set, and ad hoc restrictions had to be

introduced in the refinements. It is suggested that modulated

harmonic ADPs and modulated third-order anharmonic

ADPs form an intrinsic part, however small, of incommensu-

rately modulated structures in general. Refinements of

alternate models with and without parameters for modulated

ADPs lead to significant differences between the parameters

of the displacement modulation in these two types of models,

thus showing the modulation of ADPs to be important for a

correct description of the displacive modulation. The resulting

functions do not provide evidence for an interpretation of the

modulation by a soliton model.
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1. Introduction

The construction of a model-independent electron-density

map from phased structure factors is an important application

of the maximum entropy method (MEM) in crystallography

(Takata, 2008; van Smaalen & Netzel, 2009). Analysis of the

electron density after such a reconstruction provides the

locations of the atoms in the unit cell. As such, the MEM has

been used to determine the locations of the metal atoms in

endohedral fullerenes (Nishibori et al., 2006), to obtain

information about disorder (multiple positions) in crystal

structures (Dinnebier et al., 1999; Wang et al., 2001; Samy et al.,

2010) and about anharmonic atomic displacements (Kuma-

zawa et al., 1995; Bagautdinov et al., 1998).

The MEM has been generalized towards the determination

of the generalized electron density in ð3þ dÞ-dimensional

superspace (d = 1, 2, 3, . . . ) of aperiodic crystals (van Smaalen

et al., 2003). Again, the MEM provides information about the

locations of the atoms, which then result in a description of the



modulation functions of incommensurately modulated crystals

or incommensurate composite crystals (Palatinus & van

Smaalen, 2004; van Smaalen & Li, 2009). Alternatively, the

MEM in superspace has been used to determine the occupa-

tion domains of the atoms in quasicrystals (Yamamoto et al.,

1996). Here we will use the MEM to obtain information about

the modulation functions of incommensurately modulated

Rb2ZnCl4.

Many isostructural compounds of the �-K2SO4 structure

type undergo phase transitions on cooling. Several compounds

exhibit at least two phase transitions, first forming an incom-

mensurately modulated structure which then becomes

commensurate at lower temperatures (lock-in transition;

Cummins, 1990).

Rubidium tetrachlorozincate, Rb2ZnCl4, is one of these

compounds (Fig. 1). Rb2ZnCl4 undergoes a phase transition

from a periodic to an incommensurately modulated phase at

Tinc = 303 K. The incommensurate modulation wavevector is

q = ð0; 0; 1=3� �Þ (� ’ 0:02). The lock-in transition towards a

threefold superstructure (� ¼ 0) takes place at Tlock�in = 192 K

(Sawada et al., 1977).

The modulation of Rb2ZnCl4 increasingly deviates from a

sinusoidal shape on approaching the lock-in transition, as

shown by the growth of the intensities of higher-order satellite

reflections in the X-ray diffraction of this compound on

cooling toward Tlock�in (Aramburu et al., 1997). The results of

structure refinements of a model of displacive modulation

functions with up to fifth-order Fourier coefficients have been

reported by Aramburu et al. (2006). The latter authors inter-

preted this structure model as providing evidence for a soliton

shape of the incommensurate modulation wave.

Here we present a re-analysis of the incommensurate

structure of Rb2ZnCl4 close to the lock-in transition,

employing a more extensive data set of Bragg reflections than

has been used by Aramburu et al. (2006). The purpose of this

work is twofold. The first aim is to investigate the nature of

modulations by means of the maximum entropy method

(MEM). As we will show, modulations of atomic displacement

parameters (ADPs) and modulations of anharmonic ADPs

form an intrinsic and important part of the modulation.

Secondly we show that the modulation functions do not

provide evidence for a soliton character of the modulation in

this compound.

2. Experimental

2.1. Crystal growth and the diffraction experiment

Single crystals of Rb2ZnCl4 have been grown from aqueous

solution (Sawada et al., 1977). RbCl (2.73 g, Aldrich, 99.99%)

and ZnCl2 (1.54 g, Aldrich, 99.999%) were dissolved in 4.5 g

of ultra pure water (from a Simplicity UV system by Milli-

pore) at T = 323 K. The solution was slowly cooled to T =
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Figure 1
Basic structure of Rb2ZnCl4. Atoms Rb1, Zn and Cl1 are nearly
superimposed in this projection.

Table 1
Experimental and crystallographic data.

Crystal data
Chemical formula Rb2ZnCl4
Mr 378.1
Crystal system, superspace group Orthorhombic, Pmcn(00�3)ss�11
T (K) 196
Wavevectors q = 0.31600c*
a, b, c (Å) 7.2405 (6), 12.630 (3), 9.2067 (6)†
V (Å3) 841.9 (3)
� (mm�1) 6.20
Z 4
Radiation type Synchrotron (Hasylab, Hamburg,

Germany)
Wavelength (Å) 0.5000
Crystal dimensions (mm) 0.10 � 0.10 � 0.12

Data collection
Diffractometer Huber four-circle (Kappa geometry)
Detector marCCD165
[sin(�)/�]max (Å�1) 0.86
�’ (�) 0.3
�! (�) 0.3
Exposure times (s) 2, 8, 64
Absorption correction SADABS
Tmin, Tmax 0.5143, 0.7506
Linear absorption coefficient (mm�1) 6.08
Criterion of observability I > 3�(I)
Rint(obs/all) 0.029/0.032
No. of measured reflections 75 610
No. of unique reflections (obs/all) 6245/19 956
No. of main reflections (obs/all) 1825/1956
No. of first-order satellites (obs/all) 2617/3517
No. of second-order satellites (obs/all) 1088/3803
No. of third-order satellites (obs/all) 392/3261
No. of fourth-order satellites (obs/all) 86/3870
No. of fifth-order satellites (obs/all) 237/3549
Average redundancy 3.789

Refinement (model Dr)
RF, wR(F2), S 0.0563, 0.0705, 3.28

MEM
Number of pixels 72 � 128 � 96 � 48
Pixel size (Å3) 0.100 � 0.099 � 0.096
RF, wR(F2) 0.0112, 0.0225

† All calculations have been performed with the lattice parameters by Aramburu et al.
(2006); see x2.1.



313 K, and crystals were obtained by slow evaporation at this

temperature.

A suitable single crystal was glued to a thin glass fibre

mounted on a copper pin. X-ray diffraction experiments were

performed at beamline F1 of Hasylab, DESY, Hamburg,

employing the radiation of a wavelength of 0.5000 Å and a

MAR-CCD area detector. The temperature of the sample was

maintained at T = 196 K, employing a nitrogen-flow cryostat.

A large crystal-to-detector distance of 225 mm was chosen, in

order to be able to resolve closely spaced reflections.

With the aid of the four-circle kappa diffractometer at

beamline F1, diffraction data were collected by ’ and ! scans

with a scan step of 0.3� per image. Several values were chosen

for the off-set of the detector and for the orientation of the

crystal, thus allowing the measurement of a nearly complete

data set up to a high resolution of ½sinð�Þ=��max = 0.86 Å�1.

With the purpose of increasing the effective dynamic range of

the experiment, runs with a zero detector off-set were rep-

eated with exposure times of 2 and 8 s, and runs at higher

scattering angles were repeated with 8 and 64 s exposure. The

long exposure times resulted in overexposed strong (main)

reflections, while they allowed weak reflections (mostly

higher-order satellite reflections) to be measured.

Integrated intensities of Bragg reflections were extracted

from the measured images by the software EVAL15 (Schreurs

et al., 2010). Absorption correction was performed with

SADABS (Sheldrick, 2008). A fraction of the area of the CCD

detector was not properly cooled during parts of the experi-

ment. This is a technical problem that occurred for experi-

ments of long durations (Paulmann, 2009). As a result several

pixels of the detector always gave a large intensity, which

could negatively affect data quality. Therefore, the coordinates

of these pixels have been determined by inspection of the

images, and they were excluded from the integration.

Experimental data and crystallographic information are

summarized in Table 1.1 The observed volume of the unit cell

is significantly smaller than reported by Aramburu et al.

(2006), who gave Vcell = 844.04 Å3 with a = 7.241 (3), b =

12.648 (5) and c = 9.216 (3) Å. Since lattice para-

meters from point-detector measurements are much

more accurate than from area detectors, we have

employed the lattice parameters from Aramburu et al.

(2006) in the present refinements.

The resulting data set of intensities of Bragg

reflections — including satellite reflections up to fifth

order — was used for structure determination, struc-

ture refinements and maximum entropy calculations.

Aramburu et al. (2006) have kindly supplied the

diffraction data from their publication. These data will

be denoted as the Aramburu data. Various models

have also been tested by calculation of the values of R

indices on these data.

A peculiar property of the Aramburu data is that a

selection of the reflections were measured, which included all

main reflections and only the strongest satellite reflections as

expected on the basis of a soliton model. Satellite reflections

up to order five, except fourth order, have been measured in

this way by Aramburu et al. (2006). The result is a data set that

consists of many fewer reflections than available in the present

data. On the other hand, CCD detectors have a limited

dynamic range so that the lower bound on measurable

intensities is relatively high, resulting in the number of high-

order ‘observed’ satellite reflections being comparable in the

two data sets (Table 1).

2.2. Structure refinements

Structure models of different complexity have been refined

against the diffraction data. They involve the basic structure

coordinates ðx0; y0; z0Þ and the harmonic atomic displacement

parameters (ADPs) Uij for each of the six crystallographically

independent atoms (Fig. 1). Depending on the complexity of

the model, they may include Fourier coefficients for displa-

cement modulation (An
i and Bn

i for the sine and cosine Fourier

coefficients of the order n along the direction i ¼ x; y; z);

anharmonic ADPs of third (Cijk) and fourth (Dijkl) order;

Fourier coefficients for the modulation of the ADPs (Uij
sn, Uij

cn

for the sine and cosine Fourier coefficients of order n) as well

as Csn
ijk and Ccn

ijk (Table 2; van Smaalen, 2007).

Structure refinements were performed with the computer

program JANA2006 (Petricek et al., 2006). The model

published by Aramburu et al. (2006) involves displacement

modulation parameters of orders 1, 2, 3 and 5. Refinement of

these parameters against the Aramburu data reproduced the

published model within one standard uncertainty (�) of all

parameters.

Model A was created to resemble the published structure

model as much as possible. It includes all Fourier coefficients

up to fifth order for the displacement modulation, because the

availability of fourth-order satellite reflections in the present

data allows the refinement of the fourth-order Fourier coef-

ficients of the displacement modulations. Refinements were

initiated with the values of the published structure model as

starting parameters. Values of the refined parameters are

similar to those of the published structure model, with only 12
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Table 2
Number of parameters for the different models.

Cijk and Dijkl represent the third- and fourth-order anharmonic ADPs. The models are
defined in the text.

Model A Model B Model Cr Model C Model Dr

x0, y0, z0 13 13 13 13 13
Uij 26 26 26 26 26
Cijk – – 0 0 0
Dijkl – – – – 33
Modulation of x, y, z 100 100 100 100 100
Modulation of Uij – 84 84 84 84
Modulation of Cijk – – 132 244 132
Scale 1 1 1 1 1
Total 140 224 356 468 389

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: BP5035). Services for accessing these data are described
at the back of the journal.



out of 140 parameters having differences larger than 3� and

with a maximum difference of 5:2� for A3
x of atom Rb1 (cf.

Table 3 with Table VI in Aramburu et al., 2006).

Model B is an extension of model A, where the first- and

second-order Fourier coefficients of the modulation of the

harmonic ADPs have been incorporated. Refinements with

model A as starting values for the parameters gave a smooth

convergence and led to a considerable improvement of the fit

to all orders of reflections (Table 4).

Model B was used to create the

phased observed diffraction data from

the measured intensities for the MEM

calculations (see x2.3). Analysis of the

MEM-derived electron-density map

suggested that the next important

feature was the modulation of the

third-order anharmonic ADPs, while

their average structure values

remained zero. Model C includes, in

addition to the parameters of model B,

the Fourier coefficients up to n ¼ 5 for

the modulation of the third-order

anharmonic ADPs, Cn
ijk. This refine-

ment suffered from large correlations

between parameters. Therefore, a

reduced model, model Cr, was defined,

in which those Fourier coefficients Cn
ijk

were set to zero that had values less

than � in the refinement of model C.

This reduced the number of coeffi-

cients Cn
ijk from 244 to 132 (Table 2),

while models C and Cr fitted the data

almost equally well (Table 4).

Difference-Fourier maps based on

the observed structure factors and

those calculated for a model indicate

the improvement of the fit to the data

for increasing complexity of the model

(Fig. 2 and Table 4). The difference-

Fourier map of model B compared

with that of model Cr confirms the

importance of modulated third-order

anharmonic ADPs, as it has been

derived based on MEM density maps.

The difference-Fourier map of model

Cr displays structure around the Rb2

atom which, to a first approximation, is

independent of the phase of the

modulation. It has the signature of

unmodulated fourth-order anhar-

monic ADPs, as they are missing in

model Cr. The inclusion of fourth-

order anharmonic ADPs for all atoms

led to highly nonphysical values of

these parameters, that is, large nega-

tive values of the joint probability

distribution function for the resulting

model. Model Dr was then constructed to include fourth-order

anharmonic ADPs for atoms Rb1, Rb2 and Cl3 only. The

improvement, compared with model Cr, of the fit to the data,

in particular to the main reflections, is apparent (Table 4).

Refinements of the extinction coefficient led to a negative

value for this parameter, so it was fixed to zero.

The remaining discrepancies between calculated and

observed structure factors can be attributed in part to the

incompleteness of the model. As indicated above, the intro-
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Table 3
Amplitudes of the displacement modulation functions of model A (relative coordinates multiplied by
105).

Atom n An
x An

y An
z Bn

x Bn
y Bn

z

Rb1 1 1224 (1) 0 0 �1215 (1) 0 0
2 0 �43 (9) 82 (10) 0 �242 (8) 39 (10)
3 �291 (14) 0 0 35 (15) 0 0
4 0 �380 (30) 140 (40) 0 200 (30) �90 (40)
5 68 (18) 0 0 �38 (18) 0 0

Rb2 1 1713 (9) 0 0 �140 (7) 0 0
2 0 27 (6) �55 (8) 0 33 (6) �15 (8)
3 �103 (13) 0 0 �97 (13) 0 0
4 0 70 (20) �160 (40) 0 �40 (20) 230 (40)
5 161 (14) 0 0 70 (19) 0 0

Zn 1 998 (8) 0 0 329 (7) 0 0
2 0 �30 (7) �9 (9) 0 �22 (7) 85 (9)
3 �25 (13) 0 0 �99 (13) 0 0
4 0 �50 (30) �20 (40) 0 �20 (30) 110 (50)
5 �108 (16) 0 0 11 (17) 0 0

Cl1 1 4250 (40) 0 0 660 (30) 0 0
2 0 �43 (18) �80 (20) 0 �209 (19) �10 (20)
3 400 (50) 0 0 240 (50) 0 0
4 0 300 (60) �260 (80) 0 �210 (60) �110 (70)
5 110 (70) 0 0 �140 (70) 0 0

Cl2 1 760 (30) 0 0 5480 (40) 0 0
2 0 27 (17) �90 (20) 0 �98 (16) 60 (30)
3 �380 (50) 0 0 �1240 (50) 0 0
4 0 �10 (50) 150 (60) 0 110 (50) �150 (70)
5 100 (70) 0 0 330 (80) 0 0

Cl3 1 554 (16) 2 (13) �1094 (15) �1939 (17) 2635 (15) 1334 (15)
2 65 (18) �26 (15) 125 (17) 126 (18) �57 (16) 35 (17)
3 �230 (20) 80 (20) 30 (30) 330 (20) �535 (19) �320 (30)
4 10 (40) 20 (40) �140 (50) �300 (40) 60 (30) 250 (50)
5 �140 (30) 0 (30) 90 (40) �100 (30) 250 (30) 10 (40)

Table 4
Quality of the fit to the diffraction data after refinements of models of increasing complexity.

Given are RF values of each order (|m|) of reflections, the number of parameters, ��max, ��min, the number
of observed reflections N(obs) and the number of reflections N* with I > 5�(I). Column D�r gives R values of
model Dr calculated for the N* reflections. Model A includes displacement modulations, model B adds
modulations of harmonic ADPs, model C incorporates modulations of third-order ADPs while model Cr is
restricted to significant third-order ADP parameters, and model Dr adds basic structure parameters for
fourth-order anharmonic ADPs. For details see x2.2.

Present data Model A Model B Model Cr Model C Model Dr N(obs) Model D�r N*

All 0.1047 0.0698 0.0634 0.0633 0.0563 6245 0.0525 5145
m = 0 0.0776 0.0606 0.0561 0.0560 0.0493 1825 0.0487 1773
|m| = 1 0.1227 0.0703 0.0651 0.0650 0.0561 2617 0.0537 2358
|m| = 2 0.2388 0.1218 0.0988 0.0963 0.0969 1088 0.0787 683
|m| = 3 0.4807 0.2565 0.2045 0.2030 0.2003 392 0.1708 215
|m| = 4 0.6203 0.3149 0.2890 0.3046 0.2987 86 0.2023 12
|m| = 5 0.3434 0.2137 0.1757 0.1771 0.1619 237 0.1278 104
No. of parameters 140 224 356 468 389 – – –
��max (e Å�3) 4.85 2.11 2.17 2.18 1.71 – 1.74 –
��min (e Å�3) �3.74 �2.61 �2.09 �2.09 �1.78 – �1.71 –



duction of more parameters leads to nonphysical values and

high correlations between them, while these additional para-

meters would have been required for a full characterization of

the modulation. A second reason for the rather high final R

values of the higher-order satellite reflections lies in the less

than optimal accuracy of the present data due to limited

counting statistics. This interpretation becomes apparent when

the R values are considered for model Dr on the stronger

reflections of the present data [reflections with I>5�ðIÞ;
column N� in Table 4]. In particular, the partial R values of the

higher-order satellite reflections are considerably lower than

on the full data set (compare columns D�r and Dr in Table 4).

The fit of the models A, B, C, Cr and Dr to the Aramburu

data has been tested by refinement of the basic structure

parameters of each model against these data, while the

modulation parameters and anharmonic ADPs were kept

fixed to the values determined from the present data. The fit to

the main reflections and first-order satellite reflections is

reasonable, but it becomes worse on the introduction of

modulation parameters for the (an)harmonic ADPs (models

B–Dr; Table 5). On the other hand, the latter models lead to an

improvement of the fit to the third- and fifth-order satellites of

the Aramburu data, but with R values that are considerably

higher than those on the present data. These discrepancies can

be attributed to different qualities of the sample and especially

different temperatures, which will

affect the shapes of the modulation

functions and the contributions of

modulated and anharmonic ADPs

to it.

Therefore, independent refine-

ments were performed against the

Aramburu data, now varying all

parameters, and resulting in

models A0, B0, C0, C0r and D0r, which

differ from the corresponding

models A, B, C, Cr and Dr in the

values of the parameters. The fit to

the Aramburu data is dramatically

improved in this way (see supple-

mentary material), resulting in R

values comparable to R values on

the present data. Exceptions are

the main reflections, which are

much better fitted for the present

data, indicating the higher accu-

racy of these data compared with

the Aramburu data.

Despite convergence of the

refinements against the Aramburu

data and the resulting low R

values, the primed models suffer

from high correlations between

parameters and large standard

uncertainties. For example, none of

the modulation parameters for

ADPs in model B0 exceed 6�,

which prevents a meaningful

analysis of the modulation on the

basis of model B0, as has already

been noted by Aramburu et al.

(2006).

research papers

Acta Cryst. (2011). B67, 205–217 Liang Li et al. � Case study on Rb2ZnCl4 209

Table 5
RF values on the Aramburu data of models of increasing complexity, after
refinement of the scale parameter, the extinction coefficient, the ADP
parameters and the atomic coordinates.

Modulation parameters were kept fixed at their values obtained by
refinements against the present data.

Published
data

Model
A

Model
B

Model
Cr

Model
C

Model
Dr N(obs)

All 0.0834 0.0917 0.0912 0.0912 0.0912 1695
m = 0 0.0784 0.0837 0.0828 0.0827 0.0826 778
|m| = 1 0.0733 0.0855 0.0892 0.0900 0.0896 473
|m| = 2 0.2281 0.3820 0.3564 0.3605 0.3569 251
|m| = 3 0.4636 0.3049 0.2989 0.2859 0.2976 53
|m| = 4 – – – – – –
|m| = 5 0.3647 0.2623 0.2807 0.2667 0.2867 140

Figure 2
(xs1, xs4)-sections of difference-Fourier maps centered on the Rb2 atom (x1 ¼ 0:25, x2 ¼ 0:819 and
x3 ¼ 0:487) from different models, showing two periods along xs4. Solid lines represent positive values,
dashed lines are negative values, and long dashed lines represent the zero contour. The contour interval is
0.2 e Å�3. Maximum and minimum values over the map are 3.63/�0.57 e Å�3 for model A, 2.12/
�0.41 e Å�3 for model B, 1.35/�0.52 e Å�3 for model Cr, 0.93/�0.51 e Å�3 for model Dr. The thick (red)
lines denote the modulated position of the Rb2 atom.



The standard uncertainties of modulation parameters and

anharmonic ADPs are a multiple of the standard uncertainties

of these parameters in the corresponding unprimed models

(refinements against the present data). Therefore, we refrain

from a further consideration of the primed models.

2.3. MEM calculations

Phased observed structure factors corrected for anomalous

scattering and scaled to the scattering power of one unit cell

were obtained from the observed data and model B according

to published procedures (Bagautdinov et al., 1998). These data

were used for the calculation of a maximum-entropy-opti-

mized generalized electron density in ð3þ 1Þ-dimensional

superspace [MEM density or �MEM
s ðxsÞ] with the computer

program BAYMEM (van Smaalen et al., 2003). A uniform

prior, the Cambridge algorithm and the weights of type F2

have been used (Li et al., 2010). The MEM calculation

converged in 69 iterations (see Table 1 for more information

on the MEM calculation).

The ð3þ 1Þ-dimensional electron-density map has been

analyzed with the computer program EDMA (van Smaalen et

al., 2003). Physical space sections of �MEM
s ðxsÞ have been

obtained for 100 equally spaced t values within one period

along the fourth axis, i.e. for

0 � t< 1. Atoms in the crystal

correspond to local maxima in the

physical space sections of the

generalized electron density.

The position of each local

maximum as a function of t then

provides an estimate for the

modulated position of an atom.

Alternatively, the center-of-

charge has been determined for

the atomic basins surrounding

each local maximum. The depen-

dence on t of the positions of the

center-of-charge provides an

alternative measure for the

atomic positions. Modulation

functions have been extracted

from �MEM
s ðxsÞ by taking the

difference between the modulated

atomic position and the basic

structure position as obtained

from model B (Fig. 3).

Two-dimensional sections of

�MEM
s ðxsÞ have been visualized by

the plotting option of the

computer program JANA2006

(Petricek et al., 2006). The

(xs1; xs4) section centered on the

Rb2 atom clearly shows the

modulated position of this atom

(Fig. 4).

3. Discussion

3.1. Nature of the modulation

The incommensurate modula-

tion of Rb2ZnCl4 at a tempera-

ture of T = 196 K, close to the

lock-in transition at Tlock�in ¼ 192

K, has been determined to be

comprised of atomic displacement

modulation functions that contain

contributions of Fourier coeffi-
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Figure 3
Modulation functions of the crystallographically independent atoms of Rb2ZnCl4. Displacements along x,
y and z are given in Å. Open circles represent the center of the charge and filled circles are the maxima of
the MEM electron density. Lines represent the modulation functions of model A.



cients up to fifth order. This finding is in agreement with

previous studies on this compound (Aramburu et al., 2006).

Modulations of the ADPs are found to be an intrinsic part

of the incommensurate crystal structure. That is, the harmonic

ADPs are modulated with up to second-order Fourier coeffi-

cients and the third-order anharmonic ADPs are modulated

with Fourier coefficients up to fifth order, while the basic

structure components of the third-order anharmonic ADPs

are zero.

The finding of modulated ADPs is in agreement with

studies on several other compounds, such as incommensu-

rately modulated Na2CO3 (Dusek et al., 2003), and the

composite crystals [LaS]1:14[NbS2] and [SrO]2[CrO2]1:85 (Jobst

& van Smaalen, 2002; Castillo-Martı́nez et al., 2008). Modu-

lated ADPs have also been found necessary in cases where

only first-order satellite reflections were available in the

diffraction data, like La2C1:7, Na2Si3O7 and Pb2NiVO6 (Dusek

et al., 2000; Krüger et al., 2006; Roussel et al., 2009).

The necessity of modulation functions for third-order

anharmonic ADPs has been revealed in our previous studies

with the MEM on (NH4)2BeF4 (Palatinus et al., 2004) and

Cr2P2O7 (Li et al., 2010). Many incommensurate crystal

structures have been published, where R values are higher

than they should have been for the perfect structure model. It

can thus be speculated that the fit to diffraction data might be

improved for many compounds by the inclusion of modulated

ADPs and modulated third-order anharmonic ADPs. On the

other hand, correlations between

modulation parameters, as shown here

for Rb2ZnCl4, might prevent their

determination by structure refinements.

This problem especially exists for high-

order Fourier coefficients of modulation

functions. Meaningful values are almost

always limited to coefficients of orders

equal to and less than the maximum

order of observed satellite reflections.

It is suggested here that modulations

of ADPs are an intrinsic part of modu-

lations in incommensurate crystals in

general. Their presence can be rationa-

lized by the fact that any displacive

modulation defines a modulation of the

environments of the atoms. Different

environments require different ADPs,

which can be achieved by a modulation

of the ADPs. It is important to include

at least up to second-order Fourier

coefficients (Perez-Mato et al., 1991).

The displacement modulation of an

atom creates a tightening of its envir-

onment in the direction in which this

atom is displaced. Since the modulation

always involves displacements out of

the average position into both the

positive and negative directions, this

general feature of modulations explains

the presence of modulated third-order anharmonic ADPs,

while their average values are zero. The correlation between

displacement modulation and modulated Cijk is apparent from

the values found for model Dr of Rb2ZnCl4. Both the

displacement modulation and the modulated Cijk have their

most important nonzero components along the a axis for all

five independent atoms on the mirror plane (Table 6 and
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Table 6
Amplitudes of the displacement modulation functions of model Dr (relative coordinates multiplied
by 105).

Atom n An
x An

y An
z Bn

x Bn
y Bn

z

Rb1 1 1111 (8) 0 0 �1100 (9) 0 0
2 0 �21 (9) 94 (6) 0 �171 (8) 10 (10)
3 �175 (16) 0 0 191 (16) 0 0
4 0 �81 (16) 0 (20) 0 103 (15) �120 (20)
5 101 (9) 0 0 �94 (9) 0 0

Rb2 1 1574 (8) 0 0 �149 (6) 0 0
2 0 23 (3) �58 (4) 0 10 (3) 16 (5)
3 �148 (15) 0 0 �49 (8) 0 0
4 0 �8 (12) 40 (18) 0 27 (11) �59 (18)
5 85 (15) 0 0 29 (10) 0 0

Zn 1 958 (7) 0 0 308 (6) 0 0
2 0 �29 (3) �11 (5) 0 �26 (6) 82 (5)
3 �21 (16) 0 0 �130 (8) 0 0
4 0 �42 (13) 30 (20) 0 21 (16) �40 (20)
5 �89 (8) 0 0 12 (8) 0 0

Cl1 1 3770 (30) 0 0 580 (30) 0 0
2 0 �15 (10) �60 (15) 0 �143 (19) 10 (20)
3 �80 (50) 0 0 �160 (50) 0 0
4 0 80 (40) �70 (40) 0 �20 (30) 20 (40)
5 170 (70) 0 0 �60 (70) 0 0

Cl2 1 770 (30) 0 0 5100 (40) 0 0
2 0 �4 (11) �77 (12) 0 �68 (9) 40 (19)
3 �110 (40) 0 0 �560 (50) 0 0
4 0 0 (30) 20 (30) 0 70 (30) 10 (40)
5 90 (80) 0 0 �70 (80) 0 0

Cl3 1 501 (15) 67 (12) �1022 (10) �1811 (15) 2427 (14) 1227 (12)
2 5 (18) �31 (14) 100 (15) 81 (17) �28 (13) 12 (17)
3 �40 (30) �40 (30) �180 (30) 184 (14) �335 (18) �10 (30)
4 20 (20) �60 (20) �50 (30) �120 (20) 79 (19) 100 (30)
5 �100 (30) 40 (40) 100 (40) �80 (30) 190 (30) 10 (30)

Figure 4
(xs1, xs4)-section of the generalized electron density �MEM

s ðxsÞ at the
position of Rb2 (x1 ¼ 0:25, x2 ¼ 0:819 and x3 ¼ 0:487). The contour
interval is 10% of the maximum electron density of 175.1 e Å�3. The thick
(red) line is the modulated position of the Rb2 atom in model Dr.



supplementary material). The Cl3 atom, not on the mirror

plane, also has contributions to its modulation for the other

directions, which again affects both the displacement modu-

lation and the modulated third-order anharmonic ADPs.

Although not perfectly matched, positive displacements

along a (Fig. 5) of the Rb2 atom match negative values of C111

(Fig. 6), which implies a decreased probability (Figs. 7 and 8)

for the presence of an atom in the direction of a tighter

environment.

The trace of the center-of-charge for each atom in the MEM

density indicates smooth modulations, whereas the trace of the

local maximum of the density varies around the position

defined by the center-of-charge for each atom (Fig. 3). We take

this variation as evidence for the presence of modulated third-

order anharmonic ADPs. Similarly, several of the components

of the modulation functions in model A exhibit variations

(ripples) according to higher-order Fourier coefficients, while

the same functions appear smooth in model Dr (Fig. 5). (The

largest effect is visible for the components uy[Cl1], uz[Cl3] and

uy[Rb1].) These smoother functions seem more plausible and

they match the trace of the center-of-charge of the MEM

density very well. Both refinements (model Dr versus model

A) and the MEM thus provide evidence for modulated third-

order anharmonic ADPs. Lastly, the reduction of R values on

the increasing complexity of the

structure model provides strong

evidence for modulated

harmonic ADPs and modulated

third-order anharmonic ADPs

(Table 4).

As mentioned above, structure

refinements without (model A)

and with modulation functions

for ADPs (models B–Dr) result

in significantly different func-

tions for the displacive modula-

tion. The inclusion of modulation

functions for ADPs thus appears

to be necessary to achieve an

accurate description of the

displacive modulation, with

concomitant implications for the

interpretation of the modulation

(x3.2). Alternatively, the center-

of-charge of each atom in the

MEM density also provides a

good description of the displace-

ment modulation functions.

Comparison of the two

approaches, MEM analysis and

structure refinements, shows the

different limitations of the two

methods. The MEM density gives

evidence for the modulations of

the ADPs as well as the presence

of anharmonic ADPs. However,

the finite size of the pixels in the

MEM density (here 0.1 Å) limits

the accuracy of the atomic posi-

tions to	 0.01 Å (van Smaalen et

al., 2003), while atoms on special

positions may sometimes lead to

more accurate values of the

positions. An error of up to

0.01 Å is not small, if modula-

tions are considered with ampli-

tudes significantly below 0.1 Å.

On the other hand, structure

refinements readily lead to large
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Figure 5
Modulation functions of the crystallographically independent atoms of Rb2ZnCl4. Displacements along x, y
and z are given in Å. Open circles are the center of the charge and filled circles are the maxima of the MEM
electron density. Dashed lines represent the modulation functions of model Dr.



dependencies between parameters, such that Fourier compo-

nents of orders n>5 cannot be determined. Furthermore, a full

ab initio determination appeared impossible for the third- and

fourth-order anharmonic ADPs, and we had to resort to a

method of selecting relevant parameters (compare models C,

Cr and Dr and the discussion in x2.2).

3.2. Relation to the soliton model

Aramburu et al. (2006) have shown that a soliton model for

the modulation leads to displacement modulation functions

with Fourier components of first and fifth (and higher) order.

They introduced a measure, ns, for the soliton density, which

can be interpreted as the ratio between the width and the

separation of the discommensurations (Babkevich & Cowley,

1999), and which describes the shape of the modulation

functions with ns ¼ 1 for a sinusoidal shape and ns ¼ 0 for

non-overlapping discommensurations. Within this approach,

the phase of the fifth-order Fourier coefficient depends on the

phase of the first-order Fourier coefficient by a simple relation

and it is independent from the soliton density. The ratio

between amplitudes of fifth- and first-order Fourier coeffi-

cients should be the same for all atoms, while its value is a

measure for the soliton density. Aramburu et al. (2006) have

found these relations to be approximately valid for their

structure model for Rb2ZnCl4, and they proposed that the

modulation of Rb2ZnCl4 can be described by a soliton wave,

with a soliton density of ns ¼ 0:4 at the temperature of their

experiment.

Here we have shown that significant differences exist for the

displacement modulation functions in cases of a pure displa-

cive modulation model (model A) and a model including

modulated (an)harmonic ADPs (model Dr). Since model Dr is

the more accurate model and the Aramburu model resembles

model A, this finding questions the interpretation by

Aramburu et al. (2006) concerning the soliton shape of

displacive modulations in their model. The data from

Aramburu et al. (2006) are re-plotted in Figs. 9 and 10. The

relation between the phases of the first- and fifth-order

Fourier coefficients matches that of a soliton wave much better

than the observed standard uncertainties would suggest. This

excellent agreement might be an artefact resulting from the

fact that the only reflections included in the data set were

those which possessed high intensities in the soliton model. On

the other hand, one out of eight data points has a phase

relation that is significantly different from the soliton model,

again suggesting that the Aramburu data do not necessarily

provide evidence of the soliton model.

Both models A and Dr appear to be at variance with the

soliton model, as follows most prominently from the ratio of

amplitudes of fifth- and first-order Fourier coefficients (Fig.

10). The standard uncertainties of the phases of the fifth

Fourier coefficients are much larger for some functions in

models A and Dr than in the Aramburu model. While stan-

dard uncertainties of refined parameters are of comparable

magnitude in the different models, this discrepancy can be

ascribed to the much smaller amplitudes of some fifth-order

coefficients in model Dr than in the Aramburu model, thus

leading to a poorer estimate of the phases of these functions.

Nevertheless, large discrepancies are found between the

calculated and experimental phases of the fifth-order Fourier

coefficients, again amounting to several standard uncertain-

ties. This indicates that the present data fail to provide

evidence for a soliton shape of the modulation functions.

Another feature of the modulation arguing against the

soliton model is the presence of Fourier coefficients of orders

two, three and four, with magnitudes comparable to the

magnitudes of the fifth-order coefficients (Table 6). The

interpretation favored by Aramburu et al. (2006) is that the

third-order Fourier coefficient would represent a secondary

mode, while they have not determined the fourth-order

Fourier coefficients and the second-order Fourier coefficients

are much smaller in the model by Aramburu et al. (2006) than

presently obtained (Table 6). The interpretation of Aramburu

et al. (2006) would thus imply that secondary modes are more

important than the distortion (magnitude of fifth harmonics)

toward the supposed soliton-shaped wave, a situation that is

not necessarily likely.

An alternative interpretation of the observed structure

model is that of a squaring of the modulation wave, then

involving all harmonics of the modulation functions (Leist et

al., 2008). This interpretation is not at variance with the

interpretation of the incommensurate structure by discom-

mensurations. It only questions the structure of the discom-

mensurations as a structure given by the solution of the sine-

Gordon equation. Since the sine-Gordon equation is only a

simple model for discommensurations, a more advanced

theory might be able to describe the observed shapes of the

modulation functions.

Finally, we have presently established that modulated

harmonic ADPs and modulated third-order anharmonic

ADPs are an important part of the modulation. However,

these features have not been incorporated into the soliton

model considered by Aramburu et al. (2006). Establishing the

relation between modulated ADPs and a possible soliton

property of the modulation wave will require further theore-

tical analysis that is beyond the scope of the present work.
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Figure 6
Value in model Dr of the component C111 of third-order anharmonic
ADPs of the Rb2 atom as a function of t. Minimum and maximum values
are located at t ’ 0:1 and 0.6.



3.3. Origin of the modulation

The origin of the modulations in Rb2ZnCl4 and in A2BX4-

type compounds in general lies in the incompatibility between

the observed orthorhombic packing of ZnCl4 and Rb ions and

the nearly tetrahedral symmetry of the ZnCl4 complex ions.

This incompatibility results in one short distance between the

11-coordinated A atom (Rb1 in the present models) and an X

atom (Cl1 in the present models) in the same mirror plane.

The bond strength of this short bond in the unmodulated high-

temperature structure has been taken as a measure for the

propensity of the compound to form modulated structures at

low temperatures (Fabry & Perez-Mato, 1994).

Analysis of the interatomic distances of model Dr shows

that they are in agreement with previous studies on similar

compounds (Friese et al., 2000), and that they support the

interpretation given by Fabry & Perez-Mato (1994); see t-plots

of distances and bond angles in the supplementary material.

The present model gives displacement modulations of Rb1

and Cl1 that are in-phase with each other (Fig. 5). Conse-

quently, the very short Rb1–Cl1

distance hardly varies with phase t

of the modulation. Instead, the

strain of this contact is resolved by

the modulated third-order anhar-

monic ADPs.

4. Conclusions

A combination of structure

refinements, analysis of the super-

space MEM density and inter-

pretation of difference-Fourier

maps has been used to char-

acterize the incommensurate

modulation of Rb2ZnCl4 at a

temperature of T = 196 K, close to

the lock-in transition at Tlock�in =

192 K. The basic characteristics of

the modulation are a displacement

modulation that contains contri-

butions of Fourier coefficients up

to fifth order.

A modulation of the ADPs is

found to be an intrinsic part of the

modulation. That is, the harmonic

ADPs are modulated with up to

second-order Fourier coefficients

and the third-order anharmonic

ADPs are modulated with Fourier

coefficients up to fifth order, while

the basic structure or average

components of the third-order

anharmonic ADPs are zero.

Model Dr, which includes

modulated ADPs and modulated

third-order anharmonic ADPs,

provides different values for the

parameters of the displacement

modulation than model A, which

lacks any modulation of ADPs.

Modulations of ADPs are thus

essential for the correct descrip-

tion of the displacement modula-

tion functions.

The MEM density gives an

excellent description of the
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Figure 7
The joint probability distribution function at the site of Rb2 for selected t values for model Dr, but
obtained with Uij and Cijk only. The contour interval is 1 e Å�3 with a maximum density of 17.7 e Å�3.



displacement modulations of the atoms by means of the t-

dependencies of the traces of the centers-of-charge of the

atoms. These traces coincide with the displacement modula-

tion functions of the atoms in model Dr but not in model A,

providing further support for the necessity of modulated

ADPs in the structure model.

Modulations of the ADPs and anharmonic ADPs are visible

in the MEM density as variations of the distributions of the

density about their average value, as exemplified by the traces

of the local maxima of the MEM density around the positions

of the atoms. A quantitative interpretation of the MEM

density is made difficult by the finite resolution of this map,

which limits the accuracy of positions to 	 0.01 Å.

Structure refinements may lead to a quantitative description

of the modulation, but the introduction of the required model

parameters readily leads to correlated parameters. Never-

theless, with the extensive data set available in the present

study, we have been able to obtain significant values for

higher-order Fourier coefficients of the displacive modulation

functions and for modulated parameters of the harmonic

ADPs and the third-order anharmonic ADPs.

The results suggest that modulated harmonic ADPs and

modulated third-order anhar-

monic ADPs form an intrinsic

part, however small, of incom-

mensurately modulated struc-

tures.

For Rb2ZnCl4 we could show

that the modulation fails to

provide clear evidence for a

soliton wave as the principal

shape of the modulation functions

(Aramburu et al., 2006). Instead,

an extended theory will be

necessary which includes the

effects of modulated (an)har-

monic ADPs to understand the

modulations in A2BX4

compounds.
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Figure 10
Relation between the amplitudes (multiplied by 103 Å) of the fifth- (U5)
and first-order (U1) Fourier coefficients of the modulation functions of
model A (open circles), model Dr (filled circles) and the model from
Aramburu et al. (2006) (diamonds). The soliton model would require all
points to lie on a straight line with a slope that defines the soliton density.
The solid line is calculated for a soliton density of 0.4 proposed in
Aramburu et al. (2006); the dashed line has been obtained by a least-
squares fit to the values of model Dr and it represents a soliton density of
0.45. Error bars indicate one standard uncertainty.

Figure 9
Difference between experimental and calculated values of the phases of
the fifth-order Fourier coefficients of the displacive modulation functions
for model A (open circles), model Dr (filled circles) and the Aramburu et
al. (2006) model (diamonds). �refin is obtained from the refined fifth-order
coefficients. �theor ¼ 	� �

1
refin � 4	z0ð�Þ is calculated from the phases

(�1
refin) of the refined first-order Fourier coefficients of the same models

according to the relation obtained for the soliton model by Aramburu et
al. (2006). Error bars indicate one standard uncertainty.
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